A CASE OF DUPLEX CONVERGENT RESEMBLANCE IN AUSTRALIAN MAMMALS, WITH A REVIEW OF SOME ASPECTS OF THE MORPHOLOGY OF PHASCOGALE (ANTECHINUS) SWAINSONI WATERHOUSE AND PHASCOGALE (ANTECHINUS) FLAVIPES WATERHOUSE

By H. H. Finlayson

[Read 12 September 1957]
SUMMARY
The distribution and status of Phascogale (Antechints) flavipes and Ph. (Antechinus) swairtsoni in South Alistralia is dealt with and some differential characters of the two species are reviewed in series.

A new subspocies of Ph. sutainwoni is defined in the lower south-eastern district of Sonth Australia and adioining parts of Vietoria.

Dark coloured variants of both species are produced on invasion of wet are is of heavy stringybark forest in south-west Victoria.

Both mifeseent and fuliginous phases of both species form strikingls similor synchrumatic: pairs, the former being allopatric, the latter sympatric.

In 1924, Oldfield Thomas first drew attention to the remarkable convergent resemblance in external characters, which existed between sympatric forms of these two marsupials in northern New South Wales. The purpose of the present note is to record a similar circumstance involving the same two species, still occurring sympatrically in a restricted area west of Heathmere in south-western Victoria. This locality is distant nearly 1,000 miles along the axis of distribution from the northern site, and is near the western limit of the range of $P \eta_{2}$. swainsoni.

The case is more complicated than the New South Wales one, since two forms of each species are involved; the one normal and widespread, the other variant and localized. The aberrant forms, like those dealt with by Thomas, show a departure from a comparatively richly coloured pelage to a dull fuliginous one, together with certain minor structural changes, to be noted. In working out the identity of the two, which are most intriguingly disguised, I have found it necessary to review a considerable quantity of material representing both species, drawn from other areas than that which produced the variants, in order to establish what might safely be considered as the normal range of variation, and to clarify the differences which may be relied on as critical. Incidentally, a new snbspecies of Ph swainsoni is defined in South Australia where the species was doubtfully recorded, ${ }^{*}$ and the status and distribution of both species in that State, which has been obscure, is discussed.

The interrelation of the synchromatic pairs may be summarized thus:

A. RUFESCENT PHASES: ALLOPATRIC

Form 1. Ph. flavipes rufogaster Gray.
Form 2. Ph. swalnsoni maritima subsp. nov.
B. FULIGINOUS PHASES: SYMPATRIC

Form 3. Ph. flavipes rufogaster, Heathmere variant,
Form 4. Ph. swainsoni maritima, Heathmere variant.

[^0]The arca of occurrence of the variant phase of both species lies in the county of Normanby and stretches north-west from the basalt formations of the Mit. Clay Range as a gently sloping, low-lying plain, to the limestone gorges of the

Fig. 1.
Map of south-eastern porton of South Australia and adjoning areas of Victoria, showing main lines of distribution of Phascogale (Antechinus) flavipes rufugaster and Ph. (Antechinus) stuainseni merilimu subsp. nev.

Glenelg River near its great western bend, about 15 miles from the South Anstralian border. The average height above sea level is no more than 150

Feet the rainfall reaches 60 inches, and moch of it is strongly subject to maritime influcnces from the nearby coasts of Diseovery and Portland Bays. The towin of Pertlaml, not shown on the map (Fis. 1), is approximately 10 miles south of Heathmere.

Until recent years the greater part of the area was a dense and almost virgin Forest of Eircalypfus capitellata and E. obligur interspersed with small, swampy heaths where Leptospermums and Mclaleucas form nearly impenctrable thickets. The trees recent in massed stands and are ofton of great size and consisting entirely of grey rough-barked species, form-especially when swept by soa fogs as they frequendly ire-one of the most sombre of Australian forest tandscapes.

The region is rich in relict Jorms, and amongst mammals which have found an'luary here from the extimation which has fallen upon them in contiguons tracts, may be mentioned Potorous trilactylus, Petaurus australis. Phascolarctos cimerens, ind 3 issturus mosulotus: These are still extant. Sarcophilus harrisi is believed extinct here, but almost certainly persisted immediately priur to European occupation.

Form 1-Phascogale flawipes rufogaster Gray.

Staluy aul distribution.-The species oceurs today in two widely separated clistricts of South Australia: 1. The southern section of the Mount Lofty Range and its outlying foothills; here the country chiefly occupied is on the lower drice slopes in areas of more on less open park-like aspect where the dominant tree is Encolypius leucoxylon sometimes fringed with E. odorata. The most northerly spontancous oucurrence of which 1 have knowledge is at Mt. Torrens, rast of Adelaide, but 10 years ado the animal was intentionally introduced into the Barossa district, 20 miles north of this and it may be expected to oceur sporadically in the north Mt, Lofty Range. 2. The border areas of the southcastorn district from the Tatiam to Kalangadoo; here somewhat similar open froests of E. letucoxvlon and E. vostrata (= camaldulensis) occur, though at lower elevations and on extensive plains without vertical relief, and extend east, deep into Vietorian territory. The interval of 150 miles between these two forest arcas is occupied by an expanse of mallee scrub which, together with the River Murray, virtually isolates the two flawipes populations from one anothes or at lease limits them to a very tenuous connection through a chain of widely separated nates of bigger timber. Bat in spitc of this, there is little evidence of differentiation and they are here treated as a subspecifically homogeneons unit, extending at least to the eastern slopes of the Gramplan Range in Victoria, which yiolded the most easterly of the specimens examined.

There are no records available here, either to the west or north-east, to suggest that $p h$. flavipes rufogastor has been in contact in recent time, either with Ph. flazipes loucogaster of Western Australia or with the populations of the eastern Stites. except by this south-eastem mule.

Phascogale flatipes is a comparatively rate animal in Sonth Australia mum more sn than in Victoria or New Senth Wales - but has nevertheless a firm hold on its ground. This is the nure remarkable since its habitats lie in districts which have been farmed for a centary or more, and which for the lister half of that time have been heavily infested by the Europcan fox,

When local circumstances are favourable it is capable of huilding up considerable densily of population in restricted areas. This was so, for instance, in 1932 on the Coolawang Creek at the southorn extremity of the ML. Lofty Range, where it becaunc so uumerous that in a few weeks over 20 were takon in live traps in an area of a few aeres. The amimal was practically unknown on this creck before that time and the cause of its sudden iucrease was traood to an equally sudden expansion of rabbit trapping, which led to the accumu-
lation of carcasses in dumps, and the provision of both flesh and insect larvae on a lavish scale.

Similar inereases have been noted in the vicinity of bee hives which are sometimes selected as nesting sites, but whather the attraction here lies in the inseets and their larvae, or the honcy. is uncertain: in winter it is possible that the bigher temperature of the hives intay draw it thither, is G, G. Goodwin (1935) suggests in the cust of Peromuscos lewcopus which has a similar habit. Stindard accounts of the animal, such as that of Thomas (1885), describe it as strictly arboreal and msoctivoroms. but this neede mmel qualifiontion. It is no doubt capable of a strictly arboreal life, and is almost confined to forested tracts, but nevortheless spends much time on the ground and feeds very latgely there, Besides hollow limbs of standing trees, it shelters and nests in fallen logs, rock crevices and crannies in the soofs and wills of caves. Ost the southeastem foothills of the Mt. Lofty Range, where the terrain is often rock strewn, the north country practice of fencing fields with stone walls was early introduced by Figlish settlers, and in these walls Ph, flavijem finds a secure retreat, In the wild, it is known to kill and eat murids as well as insects and their larvae, and in captivity devours bect ravenously.

On reproduction, the data available is scanty; the uterine condition has not been investigated, but mammary acfivity in females has bern noted from August till November, and in eaptivity wild canght examples showed marked intersenal activify in Jome and July. Two females were carrying large litters of sncklings-the one, 10 at a 18 mm . stage (undated) and the other 9 at 7 mm . in August. The sex ratio it the detemimable portion of the series examined is 17 ㅇ aud 248.

Of ecto parasites, a sparse infestation of a tick mexurs but laelaps, known from the related genus Sminthopsis of the same areas, has not heen noted.

The long persistence of so primitive a form in spatled fistricts where it is subject to many adverse influences - a persistence perhaps now approaching miguilitninen - is a notable thing, where so many nore speofalized mammals have been swept away by the changing conditions.

External characters.- The following accomt is bises upon the examination of a series of 52 imlividuals. As an excellent deneral description of the animal hy Professor Wood Jones (1923) is nvailable, attention is concentrated on churacters which bave been sumewhat obscure or which serve to distinguish it Irom Ph. swansoni.

The head is broad and deep and massive, with a short exmical muzzle. All Facial vibrissae are very strongly developed. Ear long and conspicuous; the piona thin in substance and with a somewhat poaked apex and a notched or sinuous posterior margin.

Tiw muntes is comparsifively broad and stout; in the largest males its approximate dimensions are: Length from bree of earpal pouls to apical pads, 11 mme; breath across base of digies, 7 mm. mength of 3rd digit, 4 mm . The claws are yollowish white in colour, much flattened from side to side and comparatively weak-in wild crught males they attain 3.5 mm , but this may be much increased in captivity. The palms are flesh coloured and conspicuously granular.

The pads vary within wide limits as to detaited shape and relative size. The outer metacarpal (hypothenar) is acnerally a broad inverted U , blunt at the aper but the romaninge pads are much namower, long oval or slightly piriform. The onter motacarpal is always much the largost, and the most frequent size relation is. moter metacarpal $>$ imer metavarpal >4 ht interdigital >3 rd 2nd >1 st; but nomerous variants oceur. The 4th (onter) interdigital is frequently broader than its fellows and otherwise modified in shape. The condifion illustrated by Wood Jones, in which the imer metacarpal is aborted or fused with the lst interdigital (pollical), is evidently rare and is not sepre-
sentexl in the present serics where a well separated conkition is invariable and is usually emphasised by dilferences in shape. All pads are striate-the muter metacapal radially, the rest transversely.

The pes in largest males attaius a kength of 21.5 mm , and breadth 6.5 man .; the length of 3 rd digit 8 mm ., its nail 3.5 ront, sud the haflux 3.5 mm . The plantar surface is uniformly granular and flesh culoured bike the manus aud all pads are transwersely striate. The pads are eveo more variablo than those ot the suanus. The inner metatarsal is invariably the langest and is usually a shallow crescent with the concavity lateral. The outer shetatarsal is also occasionally crescontie, with its curvatuce opposed to that of the inner, but is more often a long oval or clab-shaped suicture, with uts groatest width distal. Both metatarsal pads are conmmenly rotated outwards distally from the long axis of the foot. The interdigitals are long ovals or narrow pirform, and their sizo rohations are dilleien from those of the manus, the 2nd and 3 ard usually exceeding the 1st and 4th, the latter frequently boing the smallest pud and equally subject to broadening and aborrations of shape. A trequent size sequence is: Inner metatarsal $>$ uuter metatarsal $>$ 2nd inlerdigital $=$ Srd $>$ Ist >4 th, but itt a considerable minority the median interdigitals exceed the outer metatarsals. Complete separation of the innor motatarsal and the lst interdigital (hallucal) is normal, the fusion of the two occurring in only 11 per cent. (approx.) of the series studied.

The series is somewhat deficient in lactating fomales and in the quiescent condition a count of nammary nipples is often unsatisfactory. Of the 5 best examples, 4 porsess 10 nipples and the 5 th, 9 ; all functional.

Dimensions:- The following figures give in turn the range, approx. mean and percentuge relation of mean to the head and body length, of 14 males and 10 fomalos, free from obvious immaturity. The ear measurement is from the inferion tragoid notch and is not comparable with carlier published data: Head and body 6 112-183 (120); y 102-120 (109). Tail क8 86-115 (102). S5 per cent.: $\quad 80-95(88)$, 81 per cont. Pes $\$ 18-21-5(20)$, 17 per cent.: of $18-19$ (18) $16 \cdot 5$ per cent Ear z $16-20(18), 15$ per cent: of $15-18$ (17), $15 \cdot 5$ per cent.

Two fresh killed males of medium size weighed 49 and 44 grammes respectively.

Pelnge.-The chief points of interest here aro that the head and foreparts of the forsum arc eontrasted both in texture and colour with the hinder back; the forner being usually erisp and short and a cold, grizzled iron grey, flee latter variably suffused with rufous but still grizaled with black. On the lateral and midventral areas this colow appears in undiluted form often as a rich. almnst orange tan, between Fidgway's ochraccois orange and ochraceuns tawny, and forming a broad belt separating much paler yellow bull gular and mguinal areas. The body hairs are everywhere dark phombeous at base Very characteristic are the supra and infra orbital crescents of light buff, strongly contrasted with other facial arcuts, and the tufts of midiluted buff hair at the base of the ear backs, which are tan or hafl in eontrast to the grey head. The donsm of soanus and pes are bulf or tich tan, never grizzled with a darker clement. The tail (unless if bo in aged or bleached pelage) is decidedly bicolourgrizzled black and haff dorsally, darkening rapidly to pure black for the apical Fhird and buff or tan below; the caudal mining is dense and relatively eoarse, hiding the epidermal scales on the dorsum at least and often forming an incipient brush torminally.

The skull and dontition (11, 1, figs, e, f, g, h),-The skull chatacters and dentition while in gencral agreement, show some minor deviations from the account of Thomas (1888), which was founded on a composite of 2 races (as now considered), However, variation in South Australia is considerable, even
across quite insignificant geographical intervals, and no attempt will be made bere at a racial definition of rufogaster mader these heads.

At specios level, the mair points of difterential value, which ure continned in the prosent serjes, are as follows. The skull is stoutly bult, broad sygomatically and with a short conical rostrume. The interorbital region is broad, but its mavgins appreciably aremate. The anterior palatal foraminat ace narrow and cresentic; short but variably se, extending nisulify to the posterior bose of the canine but sometimes to the middle of P^{1}. Posterion patatal bridge more than frall the width of the yaknities. Comond process tall and namow. Bullae relatively large

In the dentition T^{\prime} is strongly differentiated from I^{3-4}, with at least twico the bulh and vertical projection, distinetly prondont and separated from 1^{-1} by an evident gap, $I^{-}>\mathrm{T}^{\mathrm{B}}>\mathrm{T}^{+}$. the inequality slight but appreciable. especially in section as seen from the palate (not snbequal as per Thomas), $\mathrm{P} \rightarrow \mathrm{P}>\mathrm{P}_{\text {, }}$ but the proportion variable, P^{1} and $\mathrm{P}^{1 ;}$ sonctimes subequal; P^{1} always much larger, sometines 2 to 3 times the bulk of P^{1}, In the anteroposterion length of the buccal wall, $\mathrm{MI}^{\prime}>$ or $-\mathrm{M}^{*}>\mathrm{M}^{*}>\mathrm{M}^{+}$. In the lower incisors $\mathrm{I}_{1}>\mathrm{I}_{2}>\mathrm{I}_{\mathrm{w}}$, but T_{1} and J_{2} may be subequal and I_{1} sometimes much longer than either. In the lower premolars $\mathrm{P}_{3}>\mathrm{P}_{1}>\mathrm{P}_{1}$ and in antern-posterior length $\mathrm{M}_{3}>$ or $\mathrm{M}_{2}>\mathrm{M}_{+}>\mathrm{M}_{1}$.

The following dimemions are derived from 9 adult skulls, 5 , 4 क. Rasal
 $20 \cdot 10(17 \cdot 9)$; 모 $16 \cdot 0-17.3(16 \cdot 6)$. Nasals length of $10 \cdot 4-11-5(10 \cdot 9) ; 10 \cdot 0$ $10 \cdot 5$ ($10 \cdot 3$). Nasals groatest breadth \& $3 \cdot 4-5 \cdot 0(4 \cdot 3) ;$ T $3 \cdot 2-4 \cdot 6$ ($3 \cdot 4$). Entertemporal breadth \& $6 \cdot 3 \cdot 6 \cdot 7$ ($6 \cdot 6$) $; 0.3 \cdot 6 \cdot 6(6 \cdot 5)$. Palate length of $15 \cdot 7-17 \cdot 4(16 \cdot 8)$; $515 \cdot 3 \cdot 15 \cdot 8$ ($15 \cdot 6$). Palate breadth outsude: M^{3} \& 10.0 $11 \cdot 2(10 \cdot 5): 9.5-10 \cdot 3(9 \cdot 9)$. Anterior patatal foramina $22 \cdot 6-3 \cdot 1(2 \cdot 8)$; $\Rightarrow 2 \cdot 5 \cdot 2 \cdot 8(2 \cdot 6) . \mathrm{Ms}^{1-3}$ a $6 \cdot 0 \cdot 6 \cdot 4(6 \cdot 1) ; 5 \cdot 8-6 \cdot 0(5 \cdot 9)$,

Tate (1947a) implies that the molar rows diminish in a metrical coline trom North Queensland coastwise to Western Austratia, but this seems to be an oversmplification, as: the rufograster figures are lrequently higher than these focorded for New South Wales.

Forss 3.-The Heathmere cariant of Ph flavipes rufogdter

Differing from Ph, f. nufogaster (supra), of which it is obvionsly a derivative, chiefly in the almost complete soppression of rufous and fulvous tomes in the pelage. This is rather loose and lax and the antero-pusterior differentiation both of texture and colonr, is largely lost. Cenerit dorsal colour a dull searcely grizicled brown, about Ridgways mumy brown; yentrally a paler grey browis on gular., stemal and inguinal areas but on the mid-bolly belted acenss by a broad area of dorsal colour the zoning exactly as in rufogitore. War backs drab. seareely contrasted with the hend and no contrasting outer busal tufts and the orbital eresecnts obseure. Manus and pes pale drab. Tail dull buffy of base dorsatly, the rest drab, ticked with black and darkening Tan slightly towards the apex: drats below, the bicolour character mowh redueed.

In the pes the inner metatarsal and hallued pads ate liesed. Norphologically there is complete identity in cramal and dental characters with refogeter, but metrically the two examined give values above the means for the intertemporal breadth and width of aseending process, and below the mean for the bulla and molar roys. These diferences while probably of no systematic significunce, sesve to heighten the cenvergent similarity to swainsont of the same district.

This form is obvously a sonthem analoguc of Ph. flatipes adustat Thomas (1983) from North Queonsland and of Ph. Jhavipes unicolor Gould (1854) of northem New South Wales in which the darkouing and equatizing of the colour
scheme have been carricd a stage further. Le Souef and Burrell (1926) record is similar variant from eastern New South Wales.

Ph. swainsoni swainsoni Watehouse

In testing the character; of this speries I have relued mainly on a series of 16 from Cradle Valley, Tasmania, at an altitude of 3,000 feet in a subalpine vimate. How far this material may be taken as typical of the species in the island as a whole is uncertain, for while there is general agreement with Thomas' acconnt (1888), the skull from the Tasman Peninsula measured by bim Indientes a nuel larger animal than occurs in this collection. My own sojourn in Cradle Valley was limited to midsummer, when the species was locally searce. but in winter when much of the valley is snow-bound, it concentrates in sheltered spots and may invade camps and even homesteads. I am much indebted to the late Gustav Weindorfer, a well-known waturalist long resident on this inturesting site, for the scries reviewed, part of it being taken actually within his chalet of Waldheim.

Approximately hatf the series is subadult and the sex ratio is 13 z and $30:$ it yedds no data on the incidence of reproduction.

External charnoters (the comparison throughout is with Ph. flavipes rufo-gaster)--The heal is shallow and narow and somewhat shrew-like with a long, narrow muzzle. The ear short and broad: the structural features of the coneh similar but with the posterior margin of the pinna more rounded and less sinuous. The car projects less from the head-a characteristic which tends to be obseured by the conventional measurement taken from the inferior tragoid rotch. The wibrissae are as long, but weaker.

In the nanus, which yields similar measurements, the most conspicuous difference is in the claws, which are geteratly buth longer and stronger (reaching $4-5 \mathrm{~mm}$. in large males) and less fattened in section. The latter is the better distinction, the size difference being less constant than is believed, rufogaster showing some adaptive variation in this feature. The palu is dusky pink, the enlour variable, but always darker; it is variably granulated, usually more sparsely than shown in Fig. 1, and the individual granules are often darker than the interstices. The muter metacarpal pad is variable, but often assumes an inverted heart shape, more acnte at the apex than in fluvipes and with the inner margin shoter or inxumplete teswards the base. A more marked distinetion is provided by the complete fision of the inner metacarpal with the lst interdigital in 95 per cent. of cases; the interdigitals tend to be shorter and romder than in flavipes.

The dimensions of the pes are not significantly different from those of rufogaster; in plantar aspect, however, the foot tapers more rapidly to the heel giving a lalse impression of greater breadth and having a more marked expansion ou the outcr margini, opposite the outer metatarsal pad; pigmentation and granules as in the manus. The foot pads are similar but are equally variable. The outer metatarsal, however, is considerably larger, sometimes equalling the fumer (which is rarely so in rufogaster) and always exeeeds the interdigitals; the inner metatarsal and 4th interdigital are shorter. The must frequent size sequence is: Inner metatarsal > outer metatarsal $>$ 2nd interdigital $>1 \mathrm{st}>3 \mathrm{rd}>4$ th.

The condition of the hallucal pad is a matter of special interest, as its nore or less complete frsion with the inner metatarsal has been claimed as a specificcharacter of swainsoni distinguishing it from flavipes. In the series exaninest, hawever, only 4 (25 per cent.) show complete fusion and in these the junction of the original elements is always made obvious by a constriction at the site. In the remaining 75 per cent., the majority show separation as complete as in flecipes rufogaster, a low level gap of at least 1 mm , occurring between the two. Somewhat noexpectedly the fused condition proves to be 3 times as
frequent in subudults as in adults. The conjoined structure usually assomes the firm of an opea sigmoid curve, but may be almost straight as in Fig. 2.

Dimensions.-The following figures give in turn the range approximatimean and percentage relation of the mean to bead and body length of 7 males and 1 lemale, all adult: Head and body $\% 110-135$ (118) i 1033). Tail 3 97-110 (101), 86 per cent: $?(86), 83$ per cent. Pes \& $20-21$ ($20-6$), 17-5 per cent: \& (18), 17.5 per cent, Ear : $15-17$ (15.5), 13 per cent: γ (14), 18.6 per cent and simidarly in 6 males and I female subadult: head and body δ $86-100(92)$: 7 (98). Tail $382-90$ (87), 95 per cent: $0(80)$, d2 per cent. Pes \& 1520 (19), $90 \cdot 7$ per cent.: f (1.8), $18 \cdot 3$ per cent. Ear $514-16(14 \cdot 5)$, 15.8 per cont. \& (14), 15.3 per cent.

As compared with flavipes rufogaster the chicf dilference is in the ear which (as measmed from the lower tragoid nutch) is aboul 14 poe cent. shorter in swainsons. The fignres for the subadults are of interest as strossing the relatively greater development of appendages, eat, foot and tail all being relatively longer tham in adnlts; the lag in the values for the female io this group is due to greater maturity.

In pelage. Ph. suainsoni swainsoni dillers very markedly from flutipes rufogastor. The crat is sutt and dense; dorsally there is little of ins antero-posterion differentiation either in texture or colour, the latter being mucli darker, brownt and less gxizzled, near Rodgways Vandyke brown but with glints of bronze The ventrum is miform greyish white with scarcely a tinge of buff and thot much contrasted with the basal zome of slate. Orbital erescents absent. Ears concolorous with head. Manns and pes and tad are very dark brown, the latter only slightly derker at the apex and with little dorso-ventral contrast, and with thimer and shorter hatiog.

The skull und dentlion.-The skull is slenderly built, narrower zygomatically thud with a long, weak rostrum-contrested with the robust flavipes condition. The masals and palate are longer and the antorior palatal foramina are nearly puallel-sided slits reaching to the back of the median premolar. The posterior palatal vacuities are also very fong and narow, reducing the width of the posterior palatal bar to less than half their length. The hamular processes of the pterygoids are rewarkably long and attenuated and recurved and the bullae are smaller. The interorbital region is broader. with smooth, parallel sides. The mandible is slighter with a longer symphysis and a wider and shorter coronoid process.

The toeth throughout are slighter and narower with higher and more cliscrete eusps. [t is less specialized than in fluzines: its length only twice \mathbb{I}^{5} and not strongly proodont and scarcoly separated from I². The upper incisors flattened labin-lingually and subequal. The camines are both slighter and shorter, jess vertical and with a more distinct posterior cospule, and the lower tooth has a tringer hoel. The upper premolars are more widely spaced and the lower 4th premolar loss reducet, leading to $P_{3}>P_{1}>P_{1}$ instead of $P_{3}>P_{1}>P_{1}$. The mohat tows are shomer than in flavipes rufagosler, hut averlapping the range of the Heathmere vailants of that form.

Thu range of dimensions in two adult male skulls are as follows: Basal 1 ength $20 \cdot 7-29 \cdot 8$; greatest breadth $16 \cdot 1-16 \cdot 7$; nasals length $12 \cdot 6 \cdot 12 \cdot 8$; nasals ureatest breadth $4 \cdot 3-7$; intertemporal breadth $7 \cdot 9-8 \cdot 2$; palate length $17 \cdot 7$ $17 \cdot 8$; palate breadth outside $\mathrm{M}^{4} 8 \cdot 6 \cdot 8.7$; anterior palatal foramina $6 \cdot 5-6 \cdot 9$; $\mathrm{Mis}^{-5} 5 \cdot 4.5 \cdot 5$.

Form 2.-Phaseogale (Antechinus) swainsoni maritima subsp, nov, pls. 1 und 2 .
A terminal race at sea level in lower South Australia from the south-west extrentry of the range of the species. Separated from Ph. swainsoni mimetes Thamas (1924) (a highland race at 5,000 feet in northern New South Wales)
by a population of $P h$. swainsoni swainsoni in south-eastern Vietoria, of unknown extent, atud differing from the latter (normally) in a richly rufescent dorsally bipartite colouration and in minor cranial changes towards flavipes; but producing also a dark pelage variant in the Heathmere district of Vietoria, Distingnished from mimetes Thomas in its smaller size, shorter appendages, broader skoll, and in the domiuant phase, by a much richer colouration.

Plastic charucters, generally as in the Tasmanian series reviewed (supra) but in the manus the fusion of the imer metacarpal and Ist interdigital pad is invariable and in the pes, the similar murging of the inner metatarsal and hallueal pad, occurs with more than twice the frequency (55 per cent.). The mammary mupples ate \& in number in the 2 examples where a count is possible and they are arranged as in flavipes; in this material they are not smaller than in the latter spectes, as found by Tate (1947b).

The sange in dimensions, approx mean and percentage relation to the head and body length in 4 males and 4 females (all adult) is: Head and body $\$ 118$ $185(127)$: \& $107-117$ (111); tail \& $92-107(100), 78$ per cent.: $272-83$ (78), 70 per cent:; pes a $20-21(20) \cdot 5)$, 16 per cent.: 9 17-18 (17.5), 16 per cent.: edr \& 14-15 (14), 11 per cent,: ? 14-15 (14), 13 per cent.

So far as the limited sample permits of conclisions, it would appear that the general body size is as great or slightly greater than in the Cradle Valley animal, and that tail. pes and car are relatively slightly shorter; the female is slouter lailed than the male.

The skull is morphologically as in the Tasmanian race, but with a tendency towards laterality leading to metrical convergense lie the direction of fladipes; the zygomatic and palatal breadth are increased; the length of rostrum, palate, and anterior palatal foramina, reduced, and the molar rows are longer and the individual molars slightly heavicr.

Dimensions of 3 adult \& skulls are: Basal length 29-3-30.3 (29 8); greatest breadth $1 \overline{7} \cdot 2-18 \cdot 0(1 \overline{7} \cdot 5)$; nasals length $12 \cdot 2-12 \cdot 3$ (12.2); nasals greatest breadth $4 \cdot 6-5 \cdot 0(4 \cdot 8)$; intertemparal breadth $7 \cdot 7 \cdot 8 \cdot 0(7 \cdot 9)$; palate length $16 \cdot 8 \cdot 17 \cdot 5(17 \cdot 1)$, palate breadth outside $M^{3} 8 \cdot 8-9 \cdot 8(9 \cdot 3)$; anterior palatal foramina $3 \cdot 0 \cdot 5 \cdot 5(4 \cdot 4)$; Ms $s^{1-3} 5 \cdot 5-5 \cdot 9$ (5.7),

Pelago.-Texture moderate, less suft than in the Tasmanian aninal main pile about 10 mm . mid dorsally with contour hairs to 14 mm . General dorsal colour scarcely definably different from that of Ph flavipes rufogaster; the bead, nape and shoulders a cold, grizzled grey increasingly suffused posteriorly with rufous which may become very rich over the rump; sometimes deeper and more cupreous than in rufogaster, but often identical and similarly overlain with black contom hairs; markedly distinet from the brown tones of the typical race. Venturm a uniform greyish white, but variably and semetimes strongly washed with yellow or buff and deep plumbeous for the basal $2 / 3$. The lower lateral margius enriched with the dorsal rufous undiluted with black, but not crossing the mid-belly to give the belted pattern of rufogaster. The ear backs, lower cousse of fore and hind limb, and dorsum of manus and pes are uniform drab, or drab slightly ticked with dull grey or dull buff. The tail with short, fine hairs and untufled as in the typical race, but drab lightly grizzled with Wlaek above and scarcoly bicolour dorsoventrally except at the apex where it may darken to bistre, of near black. Buff orbital crescents are emnspicuously developed.

This plase occurs with essential uniformity in a narrow subcosstal zone extending from Robe in the south-castern district of South Australia, south and east to Portland in Victoria, whence its eastern extension is not ascertained. The habitat is largely one of consolidated dunes, interspersed with swamps and Fiesh water lakes of cousiderable extent. It is for the most part well vegctated with low-growing species, but is often treeless and in marked ecological uritrast to the forest habitats of flawipes.

Type-M4985 of the South Australian Museum, from Port MacDonnelh, southeast district of South Australias collected by G. II. Tilley. Adult male in alcohol with skull extracted; 11 examples examined including field skins of the variants (infra) which are in my own eollection.

Form 4.-The Heathuere Variant of Ph, swoinsoni matitima.

In South Australia maritima, as at prosent known, is virtually isolated from the flavipes rufogaster population of the Tatiara and Kalangadoo districts, but in Victoria a dark variant occurs sympatrically with that of flavipes in the same E. obliqua forests, west of Healhmere.

This is identical in all respects with the rufescent phase exeept in pelage colour, from which the rufous and fulvous elements are removed and replaced by trab and dull brown, exactly as in the flavipes variant, it may be regarded as a southern analogue of $P h$ s. mimetes Thomas.

The resemblance of the two phases of the two species to ono another is ofter extremely close, and it is possible to select synchromatic pairs of both coleturs from the four groups, which are so similar that they cannot be identifed by an appeal to pelage characters alone. The situation is given added pignaney by the secondary convergence in cranial characters which although slight, akds is further clement of confusion to miny atternpt at casual sorting. There is, of course, an ample residue of charanters, especially in the dentition, which gives critical distinetion as shown above, and in extcrnals the forms of swainont can usually be recognised by the shoter ears and longer claws of the manns.

While the material examined of the normal or rufescent phascs of the two species has been adequate for the purpose in hand that relating to the fuliginous lonns from the Heathmere district is seanty and limited to Give specimens, iwo of Ph. flacipes and three of $P h$. swainsoni, so that conclusions drawn from them are to some degrec tentative. Novertheloss, the value of the evidence which they yield is much onhanced by the geographical abruptness of their appeatance, by the absence of intergrades amongst them, and by the fact that two distinct species produce the same evilence in the same area,

The proper taxonomic treatinont of such variants is a problem for the solution of which the available data is in general quite inadequate. Although it has Jong been known that similar modifications are produced by flavipes and swainsoni both in eastern Australia and in Tasmania, the extent to which these forms are geographically limited is obscure and in sorne cases it is not possible even to decide which is the normal phase and which the variant. The earlier reeorded instances, notably those of Higgins and Petterd (1882-1883) in Tasmania were relegated, somewhat summarily perhaps, to the synonomy of the first described form, but later examples were treated as subspecies or even full specics. It is possible that here chromatic dimorphism is involved, of a type commnn in custralian mammals, in which the same contrasting colour phases are produced at widely separated intervals in tho range of the species and withmit invious relation to local conditions.

In the present case the main facts are cloar and point to quite different influences. Two homogenemus populations of distinct species, oceupying well separated ranges, jointly invade a restricted area where the conditions arc novel to lonth, and underge there a strictly parallel modification of pelage. The superfical natnre of the adaptive change suggests that a simple, possibly biochemical, Lactor is directly actuated by the change in exterial conditions.

How far thesc dark variants so produced may be regarded as igenetically fised and susecplible of treatment as sobspecies, is more likely to lee solved in
the laboratory than by field work. But from analogy it would seem almost certain that similar "pockets" of them, induced by similar microclimates are (or werc) scattered over the very large areas of eastern Australia where the species occur. The dilemma seems to lead either to the recognition of a geographically unfixed "physiological race"-a conception still dubiously regarded in many quarters-or to the possible naming of a patchwork of isolated micro-subspecies, scarcely distinguishable except by the sites they occupy.

As much of theoretical interest may be obscured by the lavish use of subspecific names, it secms preferable at present to leave the fuliginous phases innominate and accopt the unorthodoxy of the first expedient.

In conclusion, I wish to express my great obligation to Messrs. H. H. Finck of Heathmere and E. Peterson of Gorae, friends of Iong standing, whose frequent hospitality has enabled me to keep the local manmals under observation for many years.

REFERENCES

Fleay, D., 1949. Victorian Naturalist, 65, p. 273.
Coomwin, G. G., 1935. Mammals of Comnecticut, p. 122.
Gould, J., 1854. Mammals of Australia, pt. 6, vol. 1, pl. 37.
Higcins and Petterd, 1882. Proc. Roy. Soc. Tasm., p. 172.
Hiccins and Petrerd, 1883. Proc. Roy, Soc. Tasm., pp. 182, 185.
Le Souef, A. S., and Burreell, H., 1926. Wild Animals of Australia, London, p. 335.
Tate, G. H. H., 1947a. Bull. Amer. Mus, Nat. Hist., 88, p. 127.
Tate, G. II. H., 1947b. Bull. Amer. Mus. Nat. Hist., 88, p. 110.
Thomas, Oldfield, 1888. Catalogue of Marsupialia and Monotremata, pp. 273-4.
Thomas, Ordfield, 1923. Amm. Mag. Nat. Hist. (9), XI, p. 175.
Thomas, Oldfeld, 1924. Ann. Mag. Nat. Ifist. (9), XIV, p. 528.
Woon Jones, F, 1923. Mammals of South Australia, p. 96.

[^0]: *The name was included in a list of South Anstralian mammels in Harcus's "Soutf Australia' in 1876, bat no material in support of this record has boon traced.

